Optoelectronic Reservoir Computing
نویسندگان
چکیده
Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.
منابع مشابه
Analog readout for optical reservoir computers
Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a timemultiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main perf...
متن کاملAll-optical Reservoir Computing
Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical im...
متن کاملPhotonic information processing beyond Turing: an optoelectronic implementation of reservoir computing.
Many information processing challenges are difficult to solve with traditional Turing or von Neumann approaches. Implementing unconventional computational methods is therefore essential and optics provides promising opportunities. Here we experimentally demonstrate optical information processing using a nonlinear optoelectronic oscillator subject to delayed feedback. We implement a neuro-inspir...
متن کاملA Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron
In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of "virtual" neurons. These virtual neurons receive random projections from the input layer containing the inform...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کامل